
Using the FTP Access Method
Howard Schreier, U.S. Dept. of Commerce, Washington, DC

ABSTRACT

Recent versions of the SAS® System provide the FTP Access
Method, which can be invoked via the FILENAME statement to
directly integrate the Internet's File Transfer Protocol with SAS
input/output processes. This paper explains and illustrates the use
of this feature.

INTRODUCTION

SAS has always provided tools for reading and writing external files
(that is, files not structured or managed by the SAS System).
Traditionally, this was limited to local files and devices such as
keyboards and printers, and the only other software in the picture
was the host operating system.

In today’s computing environment, SAS applications need a wider
variety of services. They have to be able to read and write
information through other (non-SAS) applications and be able to
access resources over network connections. In some cases, the
target has a structure resembling that of a SAS data set, the solution
is a conversion “engine”, and your SAS program sees the target as if
it were a SAS data set. In other cases, the content is more arbitrary
and the solution must be more general, so a number of special
“access methods” have been added to SAS to take care of such
requirements. The FTP Access Method enables SAS applications to
read and write files by means of the Internet’s File Transfer Protocol
(FTP).

QUALIFICATIONS AND CAVEATS

The examples in this tutorial were all run on a Windows 95 system,
using SAS Version 6.12 TS020 interactively via the SAS Display
Manager System. Behavior and results can also depend on the
characteristics and configuration of the FTP server being accessed.

FTP uses bandwidth and server resources. In some cases,
techniques which avoid repeated transfers of the same file may be
more efficient and more consistent with “good citizenship” on the
Internet.

The examples in this paper are not always as robust or generalized
as production code would be.

A SIMPLE EXAMPLE

Here is a little program which downloads country codes used with
foreign-trade data provided by the Bureau of the Census.

filename datadown ftp
 'ctryname.txt'
 host='ftp.census.gov'
 cd='pub/foreign-trade/schedules'
 user='anonymous' pass='Howard_Schreier@'
 debug;

data S_Am;
infile datadown firstobs=6;
input
 name $ 2-34 ccode $ 35-38 isocode $ 45-46;
if ccode=:'3'; * South America;

;
run;

Look at the DATA step first. It is very ordinary. In fact, it is exactly as
it would be if the input file were on a local device. The invocation of
the FTP Access Method is accomplished completely within the
preceding FILENAME statement. This FILENAME statement,
however, is far from ordinary. It has a distinctive keyword (“ftp”) as
its device-type parameter and a number of unusual options (which
will be examined later).

Let’s look at excerpts from the SAS log which is generated when this
code is run. In addition to the usual record counts and so forth, there
is a lot of detail about the FTP session which takes place as the
DATA step executes. The sequence “<<<“ identifies messages from
the FTP server to the client SAS session and “>>>“ identifies
messages in the other direction (client to server). The DEBUG
option echoes these to the log.

First, the FTP client embedded in the SAS System initializes its
connection to the server. In this case, it happens to be an
anonymous session.

NOTE: <<< 220 blue.census.gov FTP server
(BeroFTPD 1.3.4(1) Thu Mar 4 02:02:45 EST
1999) ready.
NOTE: >>> USER anonymous
NOTE: <<< 331 Guest login ok, send your
complete e-mail address as password.

Despite this message, this server accepts a truncated e-mail
address. The password is masked in the log, however.

NOTE: >>> PASS XXXXXXXXXXXXXXXX
NOTE: <<< 230 Guest login ok, access
restrictions apply.
NOTE: >>> PORT 170,110,71,155,5,42
NOTE: <<< 200 PORT command successful.

Next, ASCII type is specified for the transfer. In all of the examples
in this paper, SAS automatically made the appropriate choice.

NOTE: >>> TYPE A
NOTE: <<< 200 Type set to A.

Now SAS navigates to the specified directory on the server and
requests retrieval of the file.

NOTE: >>> CWD pub/foreign-trade/schedules
NOTE: <<< 250 CWD command successful.
NOTE: >>> RETR ctryname.txt
NOTE: <<< 150 Opening ASCII mode data
connection for ctryname.txt (11060 bytes).

In addition to the log notes echoing the conversation with the FTP
server, SAS generates the usual notes recording DATA step
processing. These also include FTP-specific information; they
appear whether or not the DEBUG option is on.

NOTE: User anonymous has connected to FTP
server on Host ftp.census.gov .
NOTE: The infile DATADOWN is:
 Filename=ctryname.txt,
 Pathname=
 "/pub/foreign-trade/schedules"

 is current directory,
 Local Host Name=win95-01,
 Local Host IP addr=170.110.71.155,
 Service Hostname Name=ftp.census.gov,
 Service IP addr=148.129.129.31,
 Service Name=FTP,
 Service Portno=21,Lrecl=256,
 Recfm=Variable

NOTE: <<< 226 Transfer complete.
NOTE: >>> QUIT
NOTE: 230 records were read from the infile
DATADOWN.
 The minimum record length was 46.
 The maximum record length was 46.
NOTE: The data set WORK.S_AM has 14
observations and 3 variables.
NOTE: The DATA statement used 20.58 seconds.

The DATA step took more than 20 seconds to process a few
hundred records. This is attributable to both low throughput (relative
to the speed of accessing a local disk) and to the overhead involved
in making the client-server connection and setting up the transfer.

This is the SAS data set which results. It will be used in a later
example.

OBS NAME CCODE ISOCODE

 1 ARGENTINA 3570 AR
 2 BOLIVIA 3350 BO

 3 BRAZIL 3510 BR
 4 CHILE 3370 CL
 5 COLOMBIA 3010 CO
 6 ECUADOR 3310 EC
 7 FALKLAND ISLANDS 3720 FK
 8 FRENCH GUIANA 3170 GF
 9 GUYANA 3120 GY
 10 PARAGUAY 3530 PY
 11 PERU 3330 PE
 12 SURINAME 3150 SR
 13 URUGUAY 3550 UY
 14 VENEZUELA 3070 VE

An important thing to understand is that SAS did not download the
file (ctryname.txt), store it in a temporary location, and feed the
DATA step from the copy. Rather, the FTP connection operated
while the DATA step executed.

Summary: A specialized form of the FILENAME statement can be
used to access files on remote FTP servers.

SYNTAX

The syntax information in the table is from the SAS on-screen Help
facility. It is abridged here (a number of specialized and platform-
specific options are omitted).

GETTING DIRECTORY INFORMATION

To use the FTP Access Method, you need information (server
names, login policies, directory structures, file names, file and record
structures). You can do the necessary research using other (non-
SAS) FTP client software. But the FTP Access Method can be used
for such purposes, and this can be particularly handy when you want
to capture such information for purposes of automation.

The following program invokes the LIST option to retrieve a directory
listing from the server, then extracts the file names. It does not
actually transfer a file (note the null string where a file’s name would
appear).

filename dirlist ftp
 '' list
 host='ftp.census.gov'
 cd='pub/foreign-trade/schedules'
 user='anonymous' pass='Howard_Schreier@'
 debug;

data fnames;
infile dirlist firstobs=2 pad;
input c1 $ 1 @;
if c1='d' then delete; drop c1;
input fname $ 56-100;
if index(compress(lowcase(fname),'o'),'prt');
put _infile_;
server = 'ftp.census.gov';
path = 'pub/foreign-trade/schedules';
uname = 'anonymous';
pw = 'Howard_Schreier@';
run;

The FIRSTOBS= option is used to bypass a heading, and the first
IF statement filters out pointers to subdirectories (identified by a “d”
in the first position). Now suppose we are interested in information
pertaining to ports; the second IF statement restricts further
processing to file names containing the string “port” or the string
“prt”. The PUT statement dumps these lines to the log (see box).
The last four statements assign the access parameter values to
SAS variables; they are strictly for later use and are not necessary to

FILENAME fileref FTP 'external-file' <ftp-options> ;
fileref is a valid fileref.
FTP is the access method.
'external-file' is the name of the file to read from or write to on

the remote host machine.

Note: If you are not transferring a file but
performing a task such as retrieving a directory
listing, you do not need to specify a filename.
Instead, put empty quotes in the statement.

ftp-options can be any of the following:
HOST= 'host'

either the name of the host (for example,
server.pc.sas.com) or the IP address of the
machine (for example, 190.96.6.96)

USER= 'username'
PASS= 'password'
PROMPT specifies to prompt for the user login password
CD= 'directory '
RCMD= 'command '

command to send to the FTP server
LIST issues the LIST command to the FTP server.

This returns the contents of the working
directory as records that contain all of the file
attributes listed for each file.

Note: The file attributes that are returned will
vary depending on the FTP server that is being
accessed.

DEBUG writes to the SAS log informational messages
that are sent to and received from the FTP
server

enable FTP access in the present DATA
step (after all, these statements are not
executed until the FTP connection is
already open).

The log shows the change to the subject
directory, then the communication of the
LIST command.

NOTE: >>> CWD pub/foreign-trade/schedules
NOTE: <<< 250 CWD command successful.
NOTE: >>> LIST
NOTE: <<< 150 Opening ASCII mode data
connection for /bin/ls.
NOTE: The infile DIRLIST is:
 Filename,
 Pathname=
 "/pub/foreign-trade/schedules"
 is current directory

Summary: Using the LIST option causes SAS to retrieve a directory
listing from the server. This listing can be processed as input to a
DATA step.

PROCESSING MULTIPLE FILES

Now that we have a list of presumably port-related files, it might be
informative to print the first ten lines of each one.

This is pretty simple to do for one file at a time. Here’s an example.
The coding to access the remote file is very much like that used in
the first example.

filename dump10 ftp
 'portcode.txt'
 host='ftp.census.gov'
 cd='pub/foreign-trade/schedules'
 user='anonymous' pass='Howard_Schreier@'
 ;

data _null_;
infile dump10 obs=10;
if _n_=1 then put 'portcode.txt';
input;
put _infile_;
run;

Here is the result:

portcode.txt
 Schedule D -- U.S. Customs Districts and
Port Codes

 PORT PORT
 CODE NAME

 0101 PORTLAND, ME
 0102 BANGOR, ME
 0102 BREWER, ME
 0103 CUTLER, ME
 0103 EASTPORT, ME

But we actually want to loop through the list of files and dump the
first ten records of each . The program which was just demonstrated
does this for one file, so we could run it over and over again,
changing only the specifics. This would get pretty verbose, though a
macro could help.

However, there is another technique, one which permits the entire

loop to be managed within a single DATA step.

First, we’ll see this method in action by reworking the program we
just ran (which dumped the first 10 records of portcode.txt).

data _null_;
length rec $ 200;
rec = '';
put 'portcode.txt';
rc1 = filename(
 'dump10',
 'portcode.txt',
 'ftp',
 "host='ftp.census.gov'" ||
 " cd='pub/foreign-trade/schedules'" ||
 " user='anonymous' pass='Howard_Schreier@'"
);
file_id = fopen('dump10');
do i = 1 to 10;
 rc2 = fread(file_id);
 rc3 = fget(file_id,rec,200);
 howlong = length(rec);
 put rec $varying. howlong;
 end;
rc4 = fclose(file_id);
rc5 = filename('dump10');
run;

Here is the output written to the log:

portcode.txt
 Schedule D -- U.S. Customs Districts and
Port Codes

 PORT PORT
 CODE NAME

 0101 PORTLAND, ME
 0102 BANGOR, ME
 0102 BREWER, ME
 0103 CUTLER, ME
 0103 EASTPORT, ME

This is exactly the same as the output of the first version of this
program. As before, the FTP Access Method was used, and SAS
contacted the FTP server to download the file. But here there is no
FILENAME statement preceding the DATA step, no INFILE
statement and no INPUT statements. Instead, there are calls to
several of the file-handling functions which originated in Screen
Control Language (SCL, now known as SAS Component Language)
and have since been ported to base SAS software.

The FILENAME function does just what the FILENAME statement
did in the earlier program. In fact, the function arguments
correspond to the statement parameters, except that the order of the
file name and the keyword “ftp” are switched and the options are
concatenated into one argument. The FOPEN function opens the
external source (which in this case is the FTP process), the FREAD
function transfers a record from the external source to an
intermediate buffer, and the FGET function transfers the contents of
that buffer to a character variable. The FCLOSE function closes the

-rw-r--r-- 1 2662 5002 265461 Apr 23 1998 fprtcode.txt
-rw-rw-r-- 1 2662 5002 264363 Jul 18 1997 fprtcode0.txt
-rw-r--r-- 1 2662 5002 265464 Apr 23 1998 fprtctry.txt
-rw-rw-r-- 1 2662 5002 264406 Jul 18 1997 fprtctry0.txt
-rw-r--r-- 1 2662 5002 265459 Apr 23 1998 fprtname.txt
-rw-rw-r-- 1 2662 5002 264407 Jul 18 1997 fprtname0.txt
-rw-rw-r-- 1 2662 5002 28351 Oct 16 1995 portcode.txt
-rw-rw-r-- 1 2662 5002 26635 Oct 16 1995 portname.txt

external source. There is a second reference to the FILENAME
function, to release the reference.

Aside: look at the fourth argument in the first call to the FILENAME
function. It’s tricky because it’s a concatenation of character strings,
some of which include quotation marks. Single and double quotes
are nested, very carefully. When resolution of macro variables is an
issue, even more care is required.

These functions provide an alternative way to do external input-
output. In using them, one sacrifices much power and flexibility
provided by “traditional” DATA step I-O. The advantage in this case
is that all of the specifics can be determined at execution time and
changed during the course of processing. Nothing has to be hard-
coded. In this example, the server name, path and file name happen
to be hard-coded, but that is just for illustration. They appear within
function arguments, which are expressions that can be formed
using variables rather than constants. Thus, the I-O can be
completely controlled by data values and program logic.

Now we can put this flexibility to work. Here is a generalization of the
last program. It is driven by the data set we prepared earlier (so now
you see while the FTP parameter values were stored in the data set).

data _null_;
set fnames;
length rec $ 200;
rec = '';
put fname;
rc1 = filename(
 'anything',
 trim(fname),
 'ftp',
 'host=' || quote(trim(server)) ||
 ' cd=' || quote(trim(path)) ||
 ' user=' || quote(trim(uname)) ||
 ' pass=' || quote(trim(pw))
);
file_id = fopen('anything');
do i = 1 to 10;
 rc2 = fread(file_id);
 rc3 = fget(file_id,rec,200);
 howlong = length(rec);
 put rec $varying. howlong;
 end;
rc4 = fclose(file_id);
rc5 = filename('anything');
run;

Aside: again, look at the fourth argument in the first call to the
FILENAME function. This time, the QUOTE function is used to
make the process of embedding quotation marks in the argument a
bit less messy.

The important thing in this program is that nothing is hard-coded
(except for the fileref “anything”, which is in fact arbitrary because its
significance is purely internal to this DATA step). It happens that
only the value of FNAME varies from observation to observation. The
other variables (SERVER, PATH, UNAME, and PW) do not vary;
but they could, and this DATA step would work.

Since the SET statement drives the DATA step, an explicit DO loop
is coded to traverse the remote files (one of which corresponds to
each observation of the data set FNAMES).

Here are excerpts from the log. Ten records are dumped from the
first file.

fprtcode.txt
Foreign Foreign Country

Code Port Name Name

01520 Hamilton, ONT Canada
01527 Clarkson, ONT Canada
01528 Britt, ONT Canada
01530 Lakeview, ONT Canada
01530 Mississauga, ONT Canada
01530 Port Credit, ONT Canada
01535 Toronto, ONT Canada

The other files are similarly processed. To save space, we’ll not
show them all. Finally, the first ten records from the last file appear.

portname.txt
 Schedule D -- U.S. Customs Districts and
Port Codes

 PORT PORT
 NAME CODE
 --
 ABERDEEN-HOQUIAM, WA 3003
 ADDISON USER FEE AIRPORT, DALLAS, TX 5584
 AGUADILLA, PR 4901
 AIR CARGO HANDLING SERVICES, INC. 2773
 AIR CARGO HANDLING SERVICES, SF CA 2871

So, all of the files were dumped, as intended. It’s important to
realize, however, that a separate FTP session was opened and
closed for each file. This can aggregate into a great deal of
overhead.

Summary: SCL-type functions provide an alternative way of
implementing I-O. By itself, this has nothing to do with FTP.
However, it complements FTP by enabling the DATA step to change
files and options at execution time.

UPLOADING

So far, we have only downloaded. But the FTP Access Method is
symmetric. Here is an example.

filename prestore ftp
 'samerica.sas.ftpdata'
 user='schreih' prompt
 host='ftp.ita.doc.gov'
 cd='/users/ftp/dist/industry/otea'
 debug;

Notice that the form of the FILENAME statement does not change.
But this one refers to a different server, and to a filespace which
does not allow anonymous FTP, so a real user name is supplied and
the PROMPT option is coded to avoid embedding a password in
stored code. This works nicely in an interactive session, but batch
processing would require a different approach to password
management.

This trivial program references the remote file.

data _null_;
file prestore;
run;

I deliberately omitted PUT statements so that no data would actually
be transferred. Nevertheless, the FTP session takes place and the
file is created. The log shows that the session is initialized.

NOTE: <<< 220 infoserv FTP server (Version
1.7.109.12 Fri Jan 31 19:43:51 GMT 1997)
ready.
NOTE: >>> USER schreih

NOTE: <<< 331 Password required for schreih.
NOTE: >>> PASS XXXXXXXX
NOTE: <<< 230 User schreih logged in.

As before, the type and working directory are set.

NOTE: >>> TYPE A
NOTE: <<< 200 Type set to A.
NOTE: >>> CWD /users/ftp/dist/industry/otea
NOTE: <<< 250 CWD command successful.

Finally, the STOR operation is requested.

NOTE: >>> STOR samerica.sas.ftpdata
NOTE: <<< 150 Opening ASCII mode data
connection for samerica.sas.ftpdata.

Here are the concluding notes.

NOTE: User schreih has connected to FTP
server on Host infoserv.ita.doc.gov .
NOTE: The file PRESTORE is:
 Filename=samerica.sas.ftpdata,
 Pathname=
 "/users/ftp/dist/industry/otea"
 is current directory

NOTE: 0 records were written to the file
PRESTORE.

Summary: The FTP Access Method can upload as well as
download.

SEQUENTIAL SAS DATA LIBRARIES

The examples up to this point have used FTP filerefs in FILE and
INFILE statements. However, they can be used anywhere a fileref is
appropriate (for example, as the source for a %INCLUDE or the
target of the PRINTTO procedure).

In addition, the FTP Access Method can (with certain restrictions)
be used to read and write SAS data libraries. The primary restriction
is that such a library must use a sequential engine, which makes
sense since FTP is a sequential process.

To set up an example, I created this data set (BORDERS)
identifying pairs of contiguous South American countries:

OBS COUNTRY1 COUNTRY2 RECTYPE

 1 Brazil Argentina Ref
 2 Brazil Bolivia Ref
 3 Brazil Colombia Ref
 4 Brazil French Guiana Ref
 5 Brazil Guyana Ref
 6 Brazil Paraguay Ref
 7 Brazil Peru Ref
 8 Brazil Suriname Ref
 9 Brazil Uruguay Ref
 10 Brazil Venezuela Ref
 11 Chile Argentina Ref
 12 Ecuador Colombia Ref
 13 Ecuador Peru Ref
 14 French Guiana Suriname Ref
 15 Suriname Guyana Ref
 16 Guyana Venezuela Ref
 17 Venezuela Colombia Ref
 18 Colombia Peru Ref
 19 Peru Bolivia Ref
 20 Peru Chile Ref

 21 Chile Bolivia Ref
 22 Argentina Bolivia Ref
 23 Argentina Paraguay Ref
 24 Argentina Uruguay Ref
 25 Bolivia Paraguay Ref

Then I ran this little program to make the permutations explicit,
generating a pair of observations for each original observation.

data link;
set borders (rename=
 (country1=country country2=neighbor))
 borders(rename=
 (country2=country country1=neighbor));
run;

proc sort data=link;
by country neighbor;
run;

Now we’re going to copy these two SAS data sets (BORDERS,
LINKS) into a SAS data library in transport format on the FTP
server. Here is the program.

filename onserver ftp
 'samerica.sas.ftpdata'
 user='schreih' prompt
 host='ftp.ita.doc.gov'
 cd='/users/ftp/dist/industry/otea'
 rcmd='SITE chmod 664 samerica.sas.ftpdata'
 debug;

libname onserver xport;

proc datasets;
copy out=onserver;
select borders link;
quit;

For the moment, ignore the RCMD= option; it’s incidental. The thing
to notice is that the FILENAME and LIBNAME share a reference
name (“onserver”). The log shows that this pairing is recognized,
since the libref specifics come from a combination (engine from the
LIBNAME statement and file name from the FILENAME statement).

NOTE: Libref ONSERVER was successfully
assigned as follows:
 Engine: XPORT
 Physical Name: samerica.sas.ftpdata

Looking at additional log excerpts, we see that processing of the first
SAS data set (BORDERS) triggers initialization of the FTP
connection:

NOTE: Copying WORK.BORDERS to
ONSERVER.BORDERS (MEMTYPE=DATA).
NOTE: >>> TYPE I
NOTE: <<< 200 Type set to I.

Notice that SAS has automatically requested image (“I”) type. If it
hadn’t, we could expect the output (a SAS data library in transport
format) to become corrupted.

NOTE: >>> CWD /users/ftp/dist/industry/otea
NOTE: <<< 250 CWD command successful.
NOTE: >>> SITE chmod 664 samerica.sas.ftpdata
NOTE: <<< 200 CHMOD command successful.

At this point, SAS has passed a Unix command to the server, as
specified in the RCMD= option in the FILENAME statement. This is

just to do some housekeeping to set up one of the later examples.
Notice that this remote command references the very file that is
being written in this FTP session. SAS passes the command
specified in the RCMD= option before initiating the “main event”
(uploading the file), so this would trigger an error condition except for
the fact that we created an empty file with this name in the previous
example.

NOTE: >>> STAT
NOTE: <<< TYPE: Image; STRUcture: File;
transfer MODE: Stream
NOTE: <<< 211 End of status
NOTE: >>> STOR samerica.sas.ftpdata
NOTE: <<< 150 Opening BINARY mode data
connection for samerica.sas.ftpdata.

Notice that as a consequence of the “image” type value, the mode is
binary, which preserves the integrity of the SAS data library.

NOTE: The data set ONSERVER.BORDERS has 25
observations and 3 variables.

Finally, processing of the first data set is complete. PROC
DATASETS continues and processes the second data set.

NOTE: Copying WORK.LINK to ONSERVER.LINK
(MEMTYPE=DATA).
NOTE: The data set ONSERVER.LINK has 50
observations and 3 variables.

PUBLIC ACCESS

We have created a SAS data library in transport library on the FTP
server. This was a bit tricky, so we should confirm its readability.

I deliberately stored the library is in a filespace which permits
anonymous FTP (which, by the way, was the reason for the Unix
“chmod” in the previous example).

Aside: This anonymous FTP server accepts null passwords,
whereas one used earlier requires the left portion of the user’s e-mail
address; others require complete e-mail addresses. This is a minor
illustration of an important point: that FTP servers vary in
functionality, configuration, and policy.

As before, we’ll use a matched FILENAME-LIBNAME pair.

filename anyall ftp
 'samerica.sas.ftpdata'
 user='anonymous' pass=''
 host='ftp.ita.doc.gov'
 cd='dist/industry/otea'
 debug;

libname anyall xport;

Next comes a DATA step which invokes the libref in a SET
statement.

data; set anyall.borders;
run;

Looking at the log, we see the expected confirmation of the libref.

NOTE: Libref ANYALL was successfully assigned
as follows:
 Engine: XPORT
 Physical Name: samerica.sas.ftpdata

First, the session is initialized.

NOTE: >>> USER anonymous
NOTE: <<< 331 Guest login ok, send ident as
password.
NOTE: >>> PASS
NOTE: <<< 230 Guest login ok, access
restrictions apply.

As before, SAS automatically opts for image (“I”) type. It should be
possible to override these “type” determinations via the RCMD=
option, but I did not find it necessary for any of the examples in this
paper.

NOTE: >>> TYPE I
NOTE: <<< 200 Type set to I.
NOTE: >>> CWD dist/industry/otea
NOTE: <<< 250 CWD command successful.
NOTE: >>> RETR samerica.sas.ftpdata
NOTE: <<< 150 Opening BINARY mode data
connection for samerica.sas.ftpdata (6240
bytes).

NOTE: The data set WORK.DATA1 has 25
observations and 3 variables.

So we have closed the circle by bringing one of the SAS data sets
back to the SAS session on the local machine.

Consider: (1) the SAS data library is in a filespace which permits
anonymous FTP; (2) the library is in transport format, which is by
definition cross-platform; and (3) the FTP Access Method is part of
base SAS software. The implication is that this last program (five
statements: FILENAME, LIBNAME, DATA, SET, and RUN) is
universal, and should execute in any SAS session anywhere, as long
as the computer is connected to the Internet and the version of SAS
in use supports the FTP Access Method (and no local security
measures intefere). Thus, this arrangement allows one to set up
“public libraries” of SAS data.

Summary: The FTP Access Method can be used in contexts other
than FILE and INFILE. SAS data libraries in transport format can be
written and read.

A WEBSITE MAINTENANCE EXAMPLE

Quite commonly, FTP uploads are performed to add or refresh Web
content. If the preparation of the content is data-driven, SAS can be
a useful tool. Then the FTP Access Method makes it possible to
update and upload in one step.

To set up the example, let’s put the country codes into a format.

data isocode;
set S_Am;
fmtname = 'isocode';
type = 'C';
start = name;
label = isocode;
run;

proc format cntlin=isocode; run;

I previously loaded some U.S. export data, covering all mainland
South American countries for three years. This is a subset.

COUNTRY YEAR Q1 Q2 Q3 Q4 RECTYPE

Argentina 1996 970 1158 1181 1207 Data
Argentina 1997 1233 1390 1479 1705 Data

Argentina 1998 1404 1567 1510 1404 Data
Bolivia 1996 48 49 65 107 Data
. . .
Peru 1996 407 458 477 425 Data
Peru 1997 449 454 514 543 Data
Peru 1998 532 508 470 546 Data
. . .
Uruguay 1998 130 150 152 159 Data
Venezuela 1996 1072 1233 1204 1232 Data
Venezuela 1997 1306 1651 1849 1802 Data
Venezuela 1998 1890 1781 1439 1410 Data

The task at hand is to place on the Web a set of cross-referenced
tables based on these figures, and using the list of borders to link
them. In other words, each country’s data will be on a separate page,
with links to the pages of neighboring countries.

Each upload of a file generates a separate FTP session; there are
13 countries in the data set, and we do not want to be prompted 13
times for the password. This macro prompts once for the password,
and places it into a macro variable.

%macro loadpw;
 data _null_;
 window install rows=12 columns=60
color=blue
 #1 'Type password:' color = yellow
 #3 password $30. attr =rev_video
 #6 'ENTER to confirm' color=yellow
 attr=rev_video;
 display install;
 call symput('pw',password);
 stop;
 run;
 %mend loadpw;

This macro should be run before the code which does the FTP.
Then, after the uploads have been completed, the single statement

%let pw=;

will clear the password from macrovariable space. Once again, keep
in mind that processing in batch would require a different strategy for
password management.

Here is the outline for the report-generator, in the form of
pseudocode:

interleave data and references, by COUNTRY
if starting COUNTRY (
 open output file
 generate page headings
)
if data record (
 if first (
 start table
 generate column headings
)
 generate table row
 if last finish table
)
if reference record generate reference link
if ending COUNTRY (
 finish page
 close file
)

The idea is to write directly to the Web server. The FILE statement’s
FILEVAR= option would be a handy way to generate all of the
individual files in one DATA step. But with the FTP Access Method,

the FILEVAR= option cannot be used (during execution, file names
are recognized, but the output is sent to files so named in the local
default directory, ignoring the specifications coded in the FILENAME
statement). Moreover, FILEVAR= only alters the file name at
execution time; it would not permit changing remote directory and
other parameters coded as options in the FILENAME statement.

So we’ll again use the SCL-type functions to manage FTP
connections at execution time. The appendix presents the DATA
step. It’s pretty dense-looking, because it intersperses HTML tags
with the information content. Moreover, lines of HTML have to be
assembled before being passed to the output buffer. The result is
extensive use of character operators and functions.

As expected, each COUNTRY value initiates its own FTP session.
We can look at log excerpts.

NOTE: 220 cpcug.org FTP server (Version 5.60)
ready.
NOTE: User schreier has connected to FTP
server on Host cpcug.org .
NOTE: 220 cpcug.org FTP server (Version 5.60)
ready.
NOTE: User schreier has connected to FTP
server on Host cpcug.org .

There are 11 more pairs of notes, 13 pairs in all, reflecting the
separate FTP sessions for the 13 country files.

NOTE: The DATA statement used 6 minutes 56.06
seconds.

Note the long elapsed time. Considering the tiny volume of data, we
can only conclude that overhead is to blame.

The screen shot shows the page for Peru. The links at the bottom
are based on Peru’s borders. The HTML for this page is in the
Appendix.

Summary: The FTP Access Method can be used to implement one-
step Web maintenance procedures which include data-determined
links.

CONCLUSION
The FTP Access Method allows SAS programs to read and write
remote files at execution time. However, there are significant
performance and efficiency tradeoffs to be considered. Also, using it
effectively requires some grasp of the target server’s capabilities and
configuration, and of the file management principles of the server’s
host operating system (often Unix). Finally, password management
can be a source of difficulty. Nevertheless, the FTP Access Method
can be a useful tool.

REFERENCES

DeAngelis, Roger (8 Oct 1996), “utlftpg Remote access to SAS
transport datasets” (posting to SAS-L, archived as
gopher://jse.stat.ncsu.edu:70/0R1554780-1560591-
1m/othergroups/sasl/log9610)

SAS Institute Inc. (1990), SAS Screen Control Language, Version
6, First Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1996), The SAS System for Windows, Release
6.12, TS Level 0020, Windows Version 4.0.950 (On-screen Help),
Cary, NC: SAS Institute Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
me:

Howard Schreier
Mail Stop H-2815
U.S. Dept. of Commerce
Washington DC 20230

(202) 482-4180

Howard_Schreier@ita.doc.gov

SAS is a registered trademark or trademark of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

 APPENDIX

A. WEB MAINTENANCE EXAMPLE: SAMPLE OUTPUT (PERU)

<HTML><HEAD>
<TITLE>U.S. Exports to Peru</TITLE>
</HEAD><BODY>
<H3>U.S. Exports to Peru</H3>
(Millions of Dollars)<P>
<TABLE BORDER CELLPADDING="2">
<TR>
<TD align=center>Year</TD>
<TD align=center>Q1</TD>
<TD align=center>Q2</TD>
<TD align=center>Q3</TD>
<TD align=center>Q4</TD>
<TD align=center>Total</TD>
</TR>
<TR>
<TD> 1996</TD>
<TD align=right> 407</TD>
<TD align=right> 458</TD>
<TD align=right> 477</TD>
<TD align=right> 425</TD>
<TD align=right> 1,767</TD>
</TR>
<TR>
<TD> 1997</TD>
<TD align=right> 449</TD>
<TD align=right> 454</TD>
<TD align=right> 514</TD>
<TD align=right> 543</TD>
<TD align=right> 1,960</TD>
</TR>
<TR>
<TD> 1998</TD>
<TD align=right> 532</TD>
<TD align=right> 508</TD>
<TD align=right> 470</TD>
<TD align=right> 546</TD>
<TD align=right> 2,056</TD>
</TR>
</TABLE><P>
Bolivia
Brazil
Chile
Colombia
Ecuador
</BODY></HTML>

B. SAS CODE FOR WEB MAINTENANCE EXAMPLE

data _null_;
length line $ 200;
* Generate one Web page per country;
set expsamer(in=indata)
 link(in=inlink);
by country rectype;
if first.country then do;
 * Open file and generate HTML
 preceding the data;
 rcode1 = filename(
 'webstore',
 lowcase(put(upcase(country),$isocode.))
 || '.html',
 'ftp',
 "host='cpcug.org '" ||
 "cd='/homed/web/httpdocs" ||
 "/user/schreier/sasdemo'" ||
 "user='schreier' pass='&PW'"
);
 file_id = fopen('webstore','O');
 retain file_id;
 line = '<HTML><HEAD>';
 link line_out;
 line = '<TITLE>U.S. Exports to ' ||
 trim(country) || '</TITLE>';
 link line_out;
 line = '</HEAD><BODY>';
 link line_out;
 line = '<H3>U.S. Exports to ' ||
 trim(country) || '</H3>';
 link line_out;
 line = '(Millions of Dollars)<P>';
 link line_out;
 end;
if indata then do;
 * HTML presenting the numeric data;
 if first.rectype then do;
 * Column headings;
 line =
 '<TABLE BORDER CELLPADDING="2">';
 link line_out;
 line = '<TR>';
 link line_out;
 line =
 '<TD align=center>Year</TD>';
 link line_out;
 line =
 '<TD align=center>Q1</TD>';
 link line_out;
 line =
 '<TD align=center>Q2</TD>';
 link line_out;
 line =
 '<TD align=center>Q3</TD>';
 link line_out;
 line =
 '<TD align=center>Q4</TD>';
 link line_out;

 line =
 '<TD align=center>Total</TD>';
 link line_out;
 line = '</TR>';
 link line_out;
 end;
 * Data for one year;
 line = '<TR>';
 link line_out;
 line = '<TD>' || year || '</TD>';
 link line_out;
 line = '<TD align=right>' ||
 put(q1,comma7.) || '</TD>';
 link line_out;
 line = '<TD align=right>' ||
 put(q2,comma7.) || '</TD>';
 link line_out;
 line = '<TD align=right>' ||
 put(q3,comma7.) || '</TD>';
 link line_out;
 line = '<TD align=right>' ||
 put(q4,comma7.) || '</TD>';
 link line_out;
 line = '<TD align=right>' ||
 put(sum (of q1-q4),comma7.) ||
 '</TD>';
 link line_out;
 line = '</TR>';
 link line_out;
 if last.rectype then do;
 line = '</TABLE><P>';
 link line_out;
 end;
 end;
if inlink then do;
 * Link to page for one bordering country;
 line = '<A HREF="' ||
 lowcase(put(upcase(neighbor),
 $isocode.)) ||
 '.html">' ||
 tranwrd
 (trim(neighbor),' ',' ')
 ||' ';
 link line_out;
 end;
if last.country then do;
 * Generate HTML following the data,
 then close file;
 line = '</BODY></HTML>';
 link line_out;
 rcode4 = fclose(file_id);
 rcode5 = filename('webstore','');
 end;
return;
line_out:
 rcode2 = fput(file_id ,line);
 rcode3 = fwrite(file_id);
 return;

run;

